Contextualizing Internet Memes Across Social Media Platforms
Saurav Joshi,
Filip Ilievski,
and Luca Luceri
arXiv preprint arXiv:2311.11157
2023
Internet memes have emerged as a novel format for communication and expressing ideas on the web. Their fluidity and creative nature are reflected in their widespread use, often across platforms and occasionally for unethical or harmful purposes. While computational work has already analyzed their high-level virality over time and developed specialized classifiers for hate speech detection, there have been no efforts to date that aim to holistically track, identify, and map internet memes posted on social media. To bridge this gap, we investigate whether internet memes across social media platforms can be contextualized by using a semantic repository of knowledge, namely, a knowledge graph. We collect thousands of potential internet meme posts from two social media platforms, namely Reddit and Discord, and perform an extract-transform-load procedure to create a data lake with candidate meme posts. By using vision transformer-based similarity, we match these candidates against the memes cataloged in a recently released knowledge graph of internet memes, IMKG. We provide evidence that memes published online can be identified by mapping them to IMKG. We leverage this grounding to study the prevalence of memes on different platforms, discover popular memes, and select common meme channels and subreddits. Finally, we illustrate how the grounding can enable users to get context about memes on social media thanks to their link to the knowledge graph.